# **Capturing Light:** What is Flashing?

### GOAL

Discover the cause of flashing, and obtain repeatable methods for optimum results in sodium vapor glazing



# Approach

Rule out Alumina Silica Ratio Rule in metallic oxides, fluxes, and firing as factors

## Hue

Increasing iron and titanium in clay additives changes hue

| SSP                              | SSP-NR1 | SSP-NR2              | SSP-NR3                        | SSP       | NR4  | SSP-NS5 |  |  |  |  |
|----------------------------------|---------|----------------------|--------------------------------|-----------|------|---------|--|--|--|--|
|                                  |         |                      |                                |           |      |         |  |  |  |  |
| SSP                              | 100%    | 90%                  | 80%                            | 70%       | 60%  | 50%     |  |  |  |  |
| Newman                           | 0%      | 10%                  | 20%                            | 30%       | 40%  | 50%     |  |  |  |  |
| Super Standard Porcelain /Newman |         |                      |                                |           |      |         |  |  |  |  |
|                                  |         |                      |                                |           |      |         |  |  |  |  |
| SSP                              | SSP-T1  | SSP-T2               | SSP-T3                         | SS        | P-T4 | SSP-T5  |  |  |  |  |
| SSP                              | SSP-TI  | SSP-T2               | SSP-T3                         | SS        | P-T4 | SSP-T5  |  |  |  |  |
| SSP<br>SSP                       | SSP-TI  | SSP-T2               | SSP-T3                         | SSI       | P-T4 | SSP-T5  |  |  |  |  |
| SSP<br>SSP<br>Tile 6             | SSP-T1  | SSP-T2<br>90%<br>10% | SSP-T3<br>SSP-T3<br>80%<br>20% | SS<br>50% | P-T4 | SSP-T5  |  |  |  |  |





Flux percentages in clay bodies or flashing slips optimize the intensity of the flashed color response between 20 and 35%.





|     | Standard<br>Porcelain | Grolleg | Georgia | EPK    | lile 6 | Heimer |
|-----|-----------------------|---------|---------|--------|--------|--------|
|     | SSP                   | GR      | GE      | EPK    | TIL1   | H      |
|     | 54.14%                | 54.46%  | 52.73%  | 54.08% | 54.88% | 54.50% |
|     | 43.68%                | 41.98%  | 44.46%  | 43.75% | 42.01% | 41.14% |
|     | 0.92%                 | 2.16%   | 0.16%   | 0.46%  | 0.00%  | 0.61%  |
|     | 0.17%                 | 0.11%   | 0.05%   | 0.00%  | 0.05%  | 0.09%  |
|     | 0.25%                 | 0.34%   | 0.16%   | 0.19%  | 0.63%  | 0.30%  |
|     | 0.11%                 | 0.11%   | 0.27%   | 0.29%  | 0.47%  | 0.57%  |
|     | 0.45%                 | 0.80%   | 0.51%   | 0.59%  | 0.39%  | 1.50%  |
|     | 0.03%                 | 0.03%   | 1.65%   | 0.42%  | 1.57%  | 1.30%  |
| 120 | 2.11:1                | 2.21:1  | 2.02:1  | 2.10:1 | 2.22:1 | 2.25:1 |

# Intensity

is a reaction between volatilized sodium (salt/soda) or potassium (wood) in the atmosphere of a reduction fired kiln environment, with iron and titanium oxides in present in clay. The oxides crystalize on the surface in cooling resulting in a colorful response.

Uncovering the root causes of, and methods for, achieving flashing in sodium vapor glazing

denise@kilnjoy.com djoyal@wilson.edu https://linktr.ee/kilnjoy text: (301) 991-2360

February 2024, expanded from MFA Thesis *Capturing Light* 2014

Thesis Advisors: Joyce Michaud, Phil Berneberg, Ben Culbertson, Catherine White Hood College, Frederick, MD

#### Value

Reduction in firing and early cooling can enhance depth of color response.



Oxidized soda-fired porcelain (L) Reduced soda-fired porcelain (R)

# **Color Forms in Cooling**

Draw ring pulled during firing (L) versus slow cooled in the kiln (R)



#### Flashing

### Denise Joyal, MFA